

INTEGRATED TECHNICAL EDUCATION CLUSTER AT ALAMEERIA

E-7 | 6-A Mobile Communications Systems

Lecture #10 Effects of Mobile Radio Propagation (p1)

Instructor: Dr. Ahmad El-Banna Janna

Ahmad

Speed, Wavelength, Frequency

Light speed = Wavelength x Frequency

 $= 3 \text{ x } 10^8 \text{ m/s} = 300,000 \text{ km/s}$

System	Frequency	Wavelength	
AC current	60 Hz	5,000 km	
FM radio	100 MHz	3 m	
Cellular	800 MHz	37.5 cm	
Ka band satellite	20 GHz	15 mm	
Ultraviolet light	10 ¹⁵ Hz	10 ⁻⁷ m	

Radio Frequency Bands

Classification Band	Initials	Frequency Range	Characteristics
Extremely low	ELF	< 300 Hz	
Infra low	ILF	300 Hz - 3 kHz	Ground wave
Very low	VLF	3 kHz - 30 kHz	
Low	LF	30 kHz - 300 kHz	
Medium	MF	300 kHz - 3 MHz	Ground/Sky wave
High	HF	3 MHz - 30 MHz	Sky wave
Very high	VHF	30 MHz - 300 MHz	
Ultra high	UHF	300 MHz - 3 GHz	
Super high	SHF	3 GHz - 30 GHz	Space wave
Extremely high	EHF	30 GHz - 300 GHz	
Tremendously high	THF	300 GHz - 3000 GHz	

E-716-A, Lec#9, Dec 2014

Propagation Mechanisms

Reflection

- Propagation wave impinges on an object which is large as compared to wavelength
 - e.g., the surface of the Earth, buildings, walls, etc.
- Diffraction
 - Radio path between transmitter and receiver obstructed by surface with sharp irregular edges
 - Waves bend around the obstacle, even when LOS (line of sight) does not exist
- Scattering
 - Objects smaller than the wavelength of the propagation wave
 - e.g. foliage, street signs, lamp posts
- Shadowing !

Radio Propagation Effects

© Ahmad El-Banna

E-716-A, Lec#9, Dec 2014

• The received signal power at distance *d*:

$$\Pr = \frac{A_e G_t P_t}{4\pi d^2}$$

where P_t is transmitting power, A_e is effective area, and G_t is the transmitting antenna gain. Assuming that the radiated power is uniformly distributed over the surface of the sphere.

anna

Antenna Gain

For a circular reflector antenna Gain G = η (πD/λ)² η = net efficiency (depends on the electric field distribution over the antenna aperture, losses, ohmic heating, typically 0.55) D = diameter thus, G = η (πD f/c)², c = λf (c is speed of light)

Example:

- Antenna with diameter = 2 m, frequency = 6 GHz, wavelength = 0.05 m G = 39.4 dB
- Frequency = 14 GHz, same diameter, wavelength = 0.021 m G = 46.9 dB
- * Higher the frequency, higher the gain for the same size antenna

Land Propagation

• The received signal power:

$$P_r = \frac{G_t G_r P_t}{L}$$

where G_r is the receiver antenna gain,

L is the propagation loss in the channel, i.e.,

$$L = L_P L_S L_F$$
Fast fading
Slow fading
Path loss

E-716-A, Lec#9 , Dec 2014
$$\odot$$
 Ahmad \mathbb{E} J- \mathbb{D} anr

Path Loss (Free-space)

• Definition of path loss *L_P*:

$$L_P = \frac{P_t}{P_r},$$

Path Loss in Free-space:

 $L_{PF}(dB) = 32.45 + 20\log_{10} f_c(MHz) + 20\log_{10} d(km),$

where f_c is the carrier frequency. This shows greater the f_{c_i} more is the loss.

, Dec 2014

E-716-A, Lec#9

Path Loss (Land Propagation)

• Simplest Formula:

$$L_p = A d^{-\alpha}$$

where

A and α : propagation constants

- d : distance between transmitter and receiver
- α : value of 3 ~ 4 in typical urban area

Example of Path Loss (Free-space)

-716-A, Lec#9

Path Loss (Urban, Suburban and Open areas)

• Urban area:

 $L_{PU}(dB) = 69.55 + 26.16 \log_{10} f_c(MHz) - 13.82 \log_{10} h_b(m) - \alpha [h_m(m)] + [44.9 - 6.55 \log_{10} h_b(m)] \log_{10} d(km)$

where

$$\alpha \left[h_m(m) \right] = \begin{cases} \left[1.1 \log_{10} f_c(MHz) - 0.7 \right] h_m(m) - \left[1.56 \log_{10} f_c(MHz) - 0.8 \right], & \text{for } l \arg e \ city \\ 8.29 \left[\log_{10} 1.54 h_m(m) \right]^2 - 1.1, & \text{for } f_c \le 200 \text{MHz} \\ 3.2 \left[\log_{10} 11.75 h_m(m) \right]^2 - 4.97, & \text{for } f_c \ge 400 \text{MHz} \end{cases}, & \text{for small & medium city} \end{cases}$$

• Suburban area: $L_{PS}(dB) = L_{PU}(dB) - 2\left[\log_{10}\frac{f_c(MHz)}{28}\right]^2 - 5.4$

• Open area:

 $L_{PO}(dB) = L_{PU}(dB) - 4.78 \left[\log_{10} f_c(MHz) \right]^2 + 18.33 \log_{10} f_c(MHz) - 40.94$

Path Loss

- Path loss in decreasing order:
 - Urban area (large city)
 - Urban area (medium and small city)
 - Suburban area
 - Open area

)anna

- For more details, refer to:
 - Chapter 2, A. Goldsmith, Wireless Communications, 2004.
- The lecture is available online at:
 - https://speakerdeck.com/ahmad_elbanna
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>